Turing instability in a boundary-fed system
نویسندگان
چکیده
The formation of localized structures in the chlorine dioxide-idodine-malonic acid ~CDIMA! reactiondiffusion system is investigated numerically using a realistic model of this system. We analyze the onedimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations ~Turing instability! in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis that neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments. @S1063-651X~98!15009-2#
منابع مشابه
SPATIOTEMPORAL DYNAMIC OF TOXIN PRODUCING PHYTOPLANKTON (TPP)-ZOOPLANKTON INTERACTION
The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton interaction in spatial environment in thecontext of phytoplankton bloom. In the absence of diffusion the stability of the given system in terms of co-existence and hopf bifurcation has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal domain by assuming self diffusion in both popu...
متن کاملSPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL
In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...
متن کاملOscillatory Turing Patterns in a Simple Reaction-Diffusion System
Turing suggested that, under certain conditions, chemicals can react and diffuse in such a way as to produce steady-state inhomogeneous spatial patterns of chemical concentrations. We consider a simple two-variable reaction-diffusion system and find there is a spatio-temporally oscillating solution (STOS) in parameter regions where linear analysis predicts a pure Turing instability and no Hopf ...
متن کاملPattern Formation (ii): the Turing Instability
1. Growing modes in a reaction-diffusion system In this section we summarize the classical linear Turing instability criterion for a reaction-diffusion system. Consider a reaction-diffusion system of 2-species as ∂U ∂t = ∇ · (D1 (U,V )∇U) + f (U,V ) , (1.1) ∂V ∂t = ∇ · (D2 (U,V )∇V ) + g (U,V ) , where U (x,t) ,V (x,t) are concentration for species, D1, D2 diffusion coefficients, f, g reaction ...
متن کاملSize-dependent Vibration and Instability of Magneto-electro-elastic Nano-scale Pipes Containing an Internal Flow with Slip Boundary Condition
Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998